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Abstract. The 8 operatoris definedon Riemannsurfaceswith nodes, if X is a
compactfamily of Riemannsurfacesgivenby amapof X into Mg, theDeligne-
Mumford compactificationof the moduli space Mg, thenthefamily of operators
{8~)~�x is acontinuousfamily. Wecomputeitsdeterminantline bundle.

0. INTRODUCTION

We first explainour motivationfor studying 0 on Riemannsurfaceswith nodes.In
thePolyakovmodelfor thebosonicstringthepathintegralleadsto a certainmeasure

(thePolyakovmeasure)on M9, themoduli spaceof complexstructuresfor a compact
surfaceof genusg. Themeasureis succintlydescribedin termsof thedeterminantline
bundlefor a family of elliptic operators[BM].

Namely,let N9 denotetheuniversalcurveover M9. Eachfibreis aRiemannsurface

~ with canonicalbundle K andoperator8(p): K~—, K~®A
0’1 thus {0( p) }m~M

is anelliptic family parametrizedby M
9. (1) Its determinantline bundle(for p = 1) is
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called the Hodge line bundle )~.Thereis an explicit isomorphismof )~13with AC the
canonicalline bundleof M

9. Moreover )~hasa naturalHermitianstructurebecause

C°°(K)does ((s1,s2)= ~‘ f
5i A~’

2) and pointsof )~lie in C°°(K).Hence )~l3

and AC inherit Hermitianstructures;themeasure is the volume elementin AC ® AC
of this Hermitianstructure.

In string theoryas well as algebraicgeometry,it is naturalto considertheDeligne-
Mumford compactification M9 of M9. Riemannsurfacesoccur as stringsmoving,

breakinginto two strings,and recombining. A stringcanshrink to a point andexpand
again, giving Riemannsurfaceswith simplenodes. Thesesingularsurfaceslie in the
boundaryM9 — M9. Algebraicgeometers,usingthedualizingsheafandGrothendieck-
Riemann-Roch,extend)~to a line bundle A overM9. Physicistsapproachthebound-

aryby elongatingahandleto an infinitely longcylinder. In anyevent, ~,13 is notisomor-
phicto thecanonicalline bundleIC of M9. In fact, A— ‘

3)C hasdivisor —2( M
9 —

closely relatedto the existenceof a tachyonand thefactthat J’M ~ = cx.

Westudythebehaviourneartheboundarydifferently. Sincethepartitionfunctionand

thePolyakovmeasurecomefrom determinantsof 0(p) andtheirassociatedLaplacians,

it seemednaturalto try to define 8(p) on a Riemannsurfacewith nodeand study the
behaviourof the 8 family overM9. Our resultsaredescribedin thenextsection;briefly
for p aninteger, 0(p) existsfor a nodalsurfaceand is a continuousfamily parame-
trized by M9. Its determinantline bundle is ~6p

2—6p+1 Whenp ~ Z + ~., Al
9 must

be replacedby its spin moduli space~ whosecompactificationM9 is a branched
coveringover M9. Again 8(p) is continuousfamily.

Wehopethatour technicalinnovationwill beuseful. In our approach,M9 and M9

are naturalparameterspacesfor 0. For superstrings,ultimately oneshould integrate
over to get scatteringamplitudes. Having 0( ~) definedat the boundarymay
illuminatethequestionof finitenessof the integrals.

Finally, the Dirac operator0( ~-) hasan interestingproperty.Supposeweconstruct

a surface~ of genusg from one Z ofgenusg — I by addingahandle,asinsection1;
andsupposewechooseaspin structurewhoserestrictionto theannulusis of type ~

Then 8~(~-) variescontinuouslyas t —~ 0. Moreover 8~(~) is just t

9( ~) on Z. It
would appearthat 0( ~) is well definedand continuousasparametrizedby a universal
closedspinmoduli space,in thesenseof Fnedanand Shenker[FS] and J. D. CoIm[C].

1. DESCRIPTIONOFRESULTS

On a compactRiemannsurfaceZ (maybedisconnected),choosetwo disjoint disks
describedlocally as {Iz~< 1) and {IwI < 1). For 0 < ti < 1, delete {izI ~ Iti}
and {iwI < jt~},and identify the remainingannuli, using zw = t. Thisaddsa handle
to ~ (orelsereducesthenumberof components),creatinganewRiemannsurface .
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As t —~ 0, wegeta singularsurfaceL,~,envisionedas E with thetwo points {z = 0 }
and {w = 0 } identified.

Let 8 = tj’/2. We think of asthe surfaceoutsidethetwo disks,togetherwith

thesets {6 < izi < l} and {8 < wi < I}, and identifying {izI = 5} with {iwi = 5)
by meansof zw = t; this definesaratherarbitrarilychosen<<cut>> on E~.

Let K = bethebundleof one-formsof type(1, 0), thecanonicalline bundle,

so that K = 01; thenfor integerp, thereis amap 8(p) (briefly, 8) from sections
of K~to sectionsof K~x K. (Later,we also considerhalf-integerp.) Thereis a
naturalpairingbetweensections~ of K~® K and s of K1~,definedby

(~,a)=f~As~

where~Aa isviewedasanelementofA1” ~‘ K®K~ K~®K®K’~.Withrespect
to this pairing, the dual of 0: C°°(K~)—‘ C°°(K~® K) is —0: Q°°(K’~)—~

Co0(K~P®K).

Nearthe <<Cut>> on ~ zw = t impliesthat d z/z = —d w/w, so it is naturalto use
(dz/z)P and (dw/w)~aslocal trivializing sectionsof K~in theannuli {5 < Izi <
1) and {t5 < wi < l}, and to representlocal sectionsas f(dz/z)P ~ g(dw/w)P.

Thentheabovepairingbetweensuchasectionand f(d z/z)’~d ~ ® ~(d w/w) ‘~®

d~ii~is

t - d~Adz f d~iAdw
(0.1) J ff 4~j gg

6�IzkI Z ~�IwI<l W

In polar coordinates z = re’s, = 2 ie”~dr A dc~thus it is naturalto define
Hilbert spaceson usinga measure~i which agreesin S � Izi < 1 with drda,

and in S < izi < I with a d /3, where w = se’~away from thecut, themeasure
is given by a smoothpositivedensityon ~. [This measureis not smoothat the cut,

but its densityis Lipschitz,andthis is good enoughto dealwith a first orderdifferential
operatorsuchas 0.] Using sucha measure,wedefineHilbert spacesH~7”8 of sections

K~ØK8(~~)suchthat,for f supportedin the z-annulus,thenorm of f~(d~)8is

EJ’ifi2d,.d1”2, andwiththecorrespondingnorminthe w-annulus.For t~>0, these
areequivalentto theusualHilbert spaces.

The Cauchy-Riemarmoperator8: C°°(K~( )) —‘ C~(K~’® K( Es)) inducesa

family of unboundedoperators

D~: H~”°j dom(D~)—i

Our main resultis that this family has,in a certainsense,a limit D
0 as t -~ 0. The

extendedfamily of unboundedFredholmoperatorsis continuousin thegraphnorm,as
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explainedin Section 1 below. This implies that it is equivalentto a continuousfamily

of boundedFredhoimoperatorsfrom thegraphof D0 to L
2. Hencethe index varies

continuoslyas t —~ 0; and a continuousdeterminantline bundlecanbe definedin a
neighborhoodof t = 0. We identify this bundlein Section8.

Forintegerp, thedomainof the limiting operatorD
0 is a subspaceof H~’°,which

canbe describedlocally nearthe cut as those sectionswhich look like u (~)9 in
{0 < izi < l}, like v(~)~’in {0 < izi < 1), with u,au/a~,v,and ôv/ôll

in L
2(dp), and which satisfy a <<matchingcondition>> u(O) = (—l)9v(0). [These

functionvaluesare well definedwhenthe L2 conditionsare met.] Thelimiting opera-

tor is of <<regularsingular>>type,havingtheusualsingularityfor derivativesrepresented
in polarcoordinates.[In (0.1), wemighthavechosento use d ~ ratherthant d ~ this

would leadto a moresingularmeasure,andto a limiting operatorof thedegeneratetype
studiedby MelroseEM].]

The kerneland cokernelof the limiting operatorD
0 canbeidentified with certain

meromorphicsectionsof K~(E) and K
1—9(E). The kernelconsistsof sectionsof

K9( E), holomorphicfor z ~‘ 0, w ~ 0, with polesof order <p at thosepoints,and
with leadingterms a

0z
9 and b

0w
9 that satisfy

a
0 = (—l)

9b
0.

To describethecokernelinsimilar terms,weusethepairingbetweensectionsof K~®K
withsectionsof K’~ to induceapairing between~ and H~~’°that identifies

eachwith thedualof the other. With respectto thatpairing,theadjointof

dom(D0) —~

is

D~: dom(D~)

where D~is again — ~, withdomainconsistingof sections a in H~’—pO) with 8 a in

~ andwhich at z = 0,w = 0 are representedas u(~)’~® (~Jt~)’9 with
u(0) = (—1)‘~v(0). [SeeSection2 below.] Thus the cokemelis identifiedwith the
kernelof D~,sectionsof K’~(E) havingpolesoforder< I —p andleadingterms

thatmatchappropriately.
For p = 1/2, the caseof theDirac operator8(1/2), thebundle K( E~)has two

typesof squareroot in theannulus {8 < ri < 1, 5 < iwi < I). For onetype, local
sectionsnearz = 0, w = 0 arerepresentedas u~/d~7~~v~./dw/w, andtheanalysis
proceedsas above.In theothertype, local sectionsare ~ ~ v~/~~

7thepairing of
suchasectionwith ü~/~®d~~iJV’~®dllJ is then

(0.2) fuud~Adz+f~vd~Adw.
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Forthis type,(0.2) suggeststhemeasuregivenby rdrd c~and adad/3; with thismea-

sure,weagainobtainalimiting operatorD0, butwithnomatchingcondition.Moreover,

this measuregives the standardLebesgueclasson theoriginal nonsingularsurfaceE,
andthelocal sectionsv’~and \/~i canbeinterpretedaslocal sectionsof a square

rootof K( E) - Soin thiscase,thelimiting operatorD0 is simply 8 ona squarerootof
K( E); the<<link>> of z = 0 with w = 0 dissolvesin thelimit as t —, 0. In Section6,
we interpretthis resultin termsof a spin-modulicompactification.Thenwedescribethe
determinantline bundleof the family 0 parameterizedby M9 andidentify the family

indexwith Grothendieck-Riemann-Rochfor thedualizing sheaf. We also describethe
spinmoduli case.

In Section7, weusethecontinuityof the 0 family to reprovethewell-knownRie-
mann-Rochindexformula md(~(p))= (

2p— l)(g — 1) for theoperator

~
9:Coo(K9(E(g))) -~C°°(K

9®K(E(g)))

on a Riemannsurface E(g) of genus g. In this approach,the index is computedby

passingto a limit point in moduli space,and comparingthe limiting operatorto the
correspondingoperatorona surfaceof lowergenus,thuscomputingthevariationof the

indexwith respectto thegenus.

2. A THEOREM OFCORDESAND LABROUSSE

Thedomainof theoperatorD±varieswith theparametert; this situationis covered

by a theoremof Cordesand Labrousse[CL].
We are givenHilbert spacesH

1 and H2, and a family of closedoperatorsDt

H1 j dom(D8) —s H2. Denoteby C1 the graphof D1, and by P~the othogonal
projectionon C1. Wecall thefamily D1 graph-continuousif P1 is norm-continuous.

THEOREM. If D0 isFredhoimand P1 is continuousat t = 0 then,for smallt,D~is

Fredhoimwith ind(D1) = ind(D0).

Proof For t small, P1 inducesan isomorphismPt : C0 —+ G~.Denoteby i~the
isomorphismfrom dom(D~)to thegraph C1 C H1 ® H2, andby ir2 theprojection

from H1 ® H2 ontothesecondfactor.Then

= [ir2p~][p~’i1J.

Theright-handfactor is an isomorphismof dom(D8) onto C0, andtheleft-handfac-

tor is a norm-continuousfamily of operatorsfrom C0 into H2. Since D0 is assumed
Fredholm, ~2Po isFredholm;this persistsfor small t, andtheindex is constant,prov-

ing thetheorem.
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To verify graph-continuityof the family D1, note that it is equivalentto thegraph-

continuity of eachof the following:

r • r • --1

D 11 —D1 1t [D~ I ‘ LD1 I

The lastof theseoperatorsis graph-continuousif and only if it is continuousin norm.

We verify this norm-continuityby constructingright paramctricsfor D1 and D1.

3. PARAMETRICESNEAR THE CUT

In polarcoordinatesz = re’~,

— I ~ i~u
au/az=—e (—+——2 \ôr rôa

To constructa right parametrixfor

u (~_f.)
9 (au/ar) (*~)9d~,

v (~-~)7 (av/a~i)

supposethat weare given

5<r< 1,

(3.1)

8<r< 1,

Thenweneed u and v with

8u i8u ôv jay
(3.2) —+——f, —+——g,

ar raa ôa sO/3

satisfyinganappropriatematchingconditionat the cut izi = r = 8, wi = a = 8. From
zw = t, wehave d z/z = —d w/w and ~+ /3 = arg(t). Let 0 = arg(t), so t = S2e~°.

Thenthematchingconditionat the cut is

(3.3) u(8e~)=

A pair of functions u and v into the Sobolcv space H’ that satisfy this condition
combineto form an elementof H1 in theunionof the two annuli where u and v arc

defined.
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To invert (3.2), weuseFourierexpansionsf(r, a) = Efk(r)e~~,andsimilary for

g, u, v. Then(3.2) and(3.3) give

k k(3.2) k~~-~kfk’ ~VkVk9k

and

(3.3’) uk(S) = (_1)9e~kOvk(5).

The solutionsof (3.2’) arc

uk(r) = ~k [L:p_kfkpdp+ Ck]~

vt(s) = St [f a_kg (cr)da+ dk]

Thechoiceof lowerlimit of integrationis determinedby ourwishfora limits as S — 0,

in the spacesL
2 (d rda) and L2(dad/3). When 5 = 0, then J~’p~fkdp will not

convergefor all f~ in L2 unlessk < 0; and rk is not in L2 unlessk � 0. Thuswe
define

utrf p_kf~dp, k>0

(3.4) = I f
0dp, k=0

Jo

= rk [frP_kfkdP+ C~(t)]~ k <0,

and Ut = 0 for r < 5. Thedefinitionof Vk is nearlythe same;substitute a for r, a

for p, g for f, and d~(t)for c~(t).Wewill seethat thesedefinitionsdo in factgive

operatorsboundedin L
2, withcontinuouslimits as t —~0. Thedefinition for k = 0 is

notforcedby theconsiderationsadduced,but will satisfythematchingconditions(3.3)

for k = 0. Theothermatchingconditionsaresatisfiedwith

c~(t)= (—l)~’t_kf’ akgtda,

(3.5) 0

d~(t)=(_l)P~’t~f Pkftdp k= —I,—2,...

Givena sectiondefinedby a pair f ~ g asin (3.1), wedefinethe parametrix

Q
1(f~g) = u~v

with u and v definedasin (3.4) and (3.5).
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LEMMA 1. Consideredas a mapof L2 (0 < z <8,0 < w~<5) into itself~Q
1 ~

compact,andconvergesin norm to the operator Q0 definedby (3.4) with S = 0 , t =

O,Ck(O) = O,dk(O) = 0.

Proof We estimatethe norm of an integraloperator f K( r, p)f( p) d p on L
2 (d r)

by sup~f jK(r, p)jd r + sup,.f iK(r, p) Id p, using<<Schur’stest>> [HS, p. 22]. This
showsthat theintegraloperatorin the kt~’~cigenspace(ignoring fornow theterms Ct (t)
and dk(t)) hasnorm 0((l + 1k1y’), uniformly in 8 < 1. Hencethe direct sum
of theseoperatorsover the eigenspacesconvergesin norm. Sinceeachis a compact
integraloperator,sois thesum. Oneshowslikewisethat theintegraloperatorsfor t ~‘ 0

convergein norm,as t —‘ 0, to thosein (3.4) with t = S = 0.
As for thetermswith Ct anddk, thenormof rkct(t) in L2(8, 1) is O(Slog~(1 +

~ andthereis a like estimatefor skd(t) ThisprovestheLemma. .

The nextlemmashowswhathappensto thematchingconditions(3.3) when t = 0.

t3u iau 2LEMMA 2. Supposethatu and —+ —— are in L (0 <r < e;drda). Then all
ar racx

Fouriercoefficientsuk(r) are 0(r112) exceptfor ~ (r), andthatonehasa limit as
r —~ 0.

ôu iäu
Proof If — + — — = f, thentheFouriercoefficientsof u arc

ôr rôa

Ut(T) = r~ [f~pki~+ Ck]

~ exists;

since ut( r) is in L2, and r_k is not, it follows that J’~pkft = Ct, hence

Iut(r) = r~ f ~kf~ = iIftii Q(rh/2)

For k <0 we have J pkf~= iif~Il0(r’~/2), andtheLemmafollows. .

Thusin thedomainof D
0,u(re’~)= ~ ut(r)e’~ with Uk(O) = 0 for k~ 0,

and u0(0) = u(0) well defined. The matchingconditionsin (3.3’) areautomaticfor

k~ 0, and for k = 0 theyare expressedby u(0) = (— l)
9v(0).

As a consequence,we determinethe domainof the adjoint D,~.Near the cut, let

ü ~ ~ standfor a pairof functionsdefining an elementin dom(D
0), and u ~ v be a
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pair in thedomainof theadjoint.By theLemma,thesefunctionshaveboundaryvalues

u(0) and v(0) at thecut. Denoteby D~the formal adjointof D0. Then

(D0(ü~i),u~v)=(ii~ii,D,(u~v))—

— 2ir[ü(0)ii(0) + ii(0)i3(0)]

=(ü~I,D~(ü~i~))—2lriL(0)[fi(0)

+ (—l)
9i)(0)]

becauseof thematchingconditionon ü ~ i~.But ü(0) canbechosenarbitrarly,sothe
domainof the adjointrequiresthat

(3.6) u(0) =

4. THE GLOBAL PARAMETRIX, AND GRAPH-CONTINUITY

Let D
1 be theunboundedoperatorinducedby 8 on H~”°as above.We will con-

[I —D~1~ .

struct L D ~ j , and showtheappropriatecontinuityas t —+ 0.
Let (the <<interior>> parametrix)denotethe usualpseudodifferentialparametrix

for 0 on thenonsingularcompactRiemannsurfaceE. Thus

~Q1f=f+S1f;

thekernelof S~is C°°,and thekernelof Q~ is C~off thediagonal.Nearthe cut,

weusetheparametrixQ1 constructedabove;thus,set

Q = co1Q,~b~+ co~Q1i~

where + = I on E1, ço,~&,= ~, ~ = co and i,b1 vanish for lzi < ~ and

wi < f, while co~and ~ aresupportedin{izl < l}U{iwI <1). Wehave

D1Q = ~ + + [co~DtQt~~+

= I+R

where co’ =

0co~and theremainderis

R = ço~S,~b
1+ + ~
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By Lemma 1, R is a compactoperator.Define Q’ analogouslyas a right parametrix

for Di”. Then

(4 1) F I —D1 1 F U Q — F’+ R’ Q[D I j [—Q’ U — [ —Q’ 1+ R

or )1Q~= 1÷R~,with ?~compact,so 1+ R1 is Fredholmwith index0. By its form,

D1 is invertible,so Q1 is aFredholmoperatorfrom II~to Dom (D1), with index0. Let
N0 bethenullspaceofQ0, and k = dim(N0). ThenRarige(Q0) hascodimensionk
in Dom(

13
0), sothereisak-dimensionalsubspaceV of Dom(t~0)whichislinearly

independentof Range( Q0). Let ~ map N0 isomorphicallyonto that k-dimensional

subspaceV, and map N~to U. Then Q0 + S~is anisomorphismof H0 (E0) to

Dom(~0),so DQ(Q0+ S~) 1+ I?~3+ D0S0 is invertible,and

= (~o+ ~) (1+ !?~+

Wenow transfertheoperatorsl)~,Q1 and .~ in (4.1) to familiesactingin thefixed
space ‘IIJ of sectionson E0, ratherthan thevarying spacesH~’of sectionson E1.
Takea continuousfamily of diffeomorphismsx1 of {U < Izi < 1,0 < wi < I }
onto {8 < izi < 1,8 < Iwi < I }, 5 = it!

1!2, with Xo the identity. Theseinduce
unitaryoperatorsU~mapping ~ onto ~, with U

0 = I. Composedwith thenatural

embeddingII~C H0, the family U1 is stronglycontinuous. By Lemma I, Q1 can
be viewedas a norm-continuousfamily of compactoperatorsin ~ mapping .I~to

itself and H~- to 0. Hence U~Q1U1is norm-continuousat t = U. For, Q0 canbe

approximatedby anoperatorF of finite rank,and then

(4.2) U~’Q1U1—Q0=(U1~FU1—F)+U1~(~1U1—F)U1+(F—Q0).

Here U~is viewed as an isometryinto H0, and U~’as a partial isometryof H0 an-
nihilating functions supportedin {izJ < 8} U {iwI < 5}, and U~—~ I strongly,as

t —~ U. Hencein (4.2),thelasttwo termscanbemadesmall innorm by choiceof F, and

thenthe first madesmallby taking t near 0. Similarly, U~’I~U1is anorm-Continuous

family.
Now, U1”U1 = I and U1U1~= projectionon functionssupportedin IzI > & wi > 8,

so by (4.1)

(U~1U1) (U~’~ U1 + S0) = I + U~’~ U1 + up3, U~0.

The right-handside is norm-continuous,and invertible when t = U. Hence U~D1U1
hasa norm-continuousinverse,and it follows that D1, transferredvia ~1 to thefixed
spaceH~’°>,is a graph-continuousFredhoimfamily.
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5. THE CASE p = 1/2

The casep = 1/2 concernsthe Dirac operator8(1/2), actingon a squarerootof

thecanonicalbundle K. Consideranannulus A = {S < Iz I < I). Any line bundle

overA is trivial. In particular,K hasthe crosssectiond z. If L is a spinbundle (i.e.
a squarerootof K) then L

2 ‘~‘ K. If a is a nonvanishingholomorphicsectionof L,

then a2 = fd z for somenonvanishingholomorphicfunction f. It is nothardto see
thatthereareexactlytwo inequivalentcases:either f hasaholomorphicsquarerooton
A, orelsezf hassucha root. Thus, K hastwo differentsquareroots;oneof theroots
has ~ as nonvanishingsection,andtheotherhas ~ Only in thefirst caseis
thereanextensionto a root of thecanonicalbundleon thedisk { z < I }.

So in the annulusobtainedby linking {S < Izi < l} with {8 < wi < I), local
sectionsof a spinbundleareeither u/~7 ~ ~ or u”./~ ~ vs/~, with

appropriatematchesbetweenu and v.
Now considera surfaceof genus g, with 229 (equivalenceclassesof) line bundles

L suchthat L 0 L ‘~‘ A”° = K. Let K”2() denoteoneof thesebundles. On
the annulus {8 < Izl < 1) this inducesoneof thetwo possiblebundleas above.The
case~ which doesnotextendto thedisk, worksoutexactlyaswith integer p.
Becauseof thesquareroot, thereare two possiblematchingconditions,and eachhasa

distinctlimit as t —. 0.
The caseof ~ which doesextendto {izi < i ~, is moreinteresting.Since

dz = —tw2dw = —52e’0w2dw, one of thetwo possibleidentificationsgives the

matchingcondition

= i5e’012w~1v’~T~.

At thecut, z = Sesa,and ~/d~= ie~~~°/2/dw, sothematchingconditionbetween

uv’~ and v~/d~is

(5.1) u( Se~a)= —ie~°°’2~v(Se’9’°’).

Noticethe monodromy;if t = 82e’0 tracesa circle aroundt = 0, thesign in (5.1) is

reversed.Thusforeacht ~ 0 therearetwo differentline bundleswhich areexchanged

by acircuit of t = 0; but in the limit as t —~ 0, therewill bejustonebundle.
Whenwe expressthe matchingcondition (5.1) in termsof the Fouriercoefficients,

thereis a shift in thesubscript:

(5.2) Ut(S) =

Theseconditionspair the indices {k > U} with {k < —l}. Thus we defineour
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parametrixby

ut(r) = rkfp_kftdp, k � 0

(5.3)

= rk [f p~kfkdp+ Ck(t)] k <—I,

with theanalogousdefinition for Vt, containinga constantof integrationdk(t), satis-

fying

= ie_~Ot
2_~O8_2k_1fO ~k+Ig~

1d a,(5.4) 6

dk(t) = j~_sC/2_~kOS_2k_I f ~k+1 f_k_Id p

for k < —1 As notedin the introduction, in the presentcaseit is naturalto use the
measurerdrd a andthenorms

IIu~II
2= f iul2rdrda,IIfII2 = fIfI2~~

Wefind that jIr’~ck(t) = 0(Slog~IkL-1)IIg_~_iJ, with thecorrespondingestimatefor
akdt(t), andbothtenduniformly toO as t —~ 0. Theintegraloperatorsf K(r, p)f(p)

d p actingin L2(rd r) areestimatedby sup,.f rK/p~dp+supf Kid r [HS, p. 22];

theyhavetheobviouslimits as t —~ U, asbefore.
We needalsoaparametrixfor the adjointof + ~ actingin L2 ( rd rd a), with

thematchingconditions;theoperatoris

, a _,

D ——+r (1——I),
ar aa

and thematchingconditionis the sameexceptfor sign. Thus D u = f means +

r’(k+ l)Ut = —fk. Thislcadstosolutionsasin(5.3),butwithk replacedby—k—l;

so onceagain,the desiredlimits exist. But no matchingconditionsurviveg,andwe arc

usingthe density rd rd a, which is thenaturaldensityon the nonsingularsurface ~.

(An elliptic first-orderoperatoron a smoothcompactmanifold hasonly oneclosedreal-

ization,with domainthe Sobolevspace H1. Thisprecludesanymatchingconditions).
Thus,in this case,thelink betweenthe annuli dissolvescompletelyas t —~ 0.

Thecasep = 3/2 isthat of theRaritaSchwingeroperatorin superstringtheory. As
with p = 1/2, therearetwo distinctstructuresin the annulus.Onehasthenonvanish-

ing section ~ which is equivalentto —i8e’°12wv ~D• Thecorresponding

matchingconditionis

u(8e’~)=
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FortheFouriercoefficients,this gives

Uk(S) =

Thisis thesameasfor p = 1/2, exceptfor sign,sotheparametrixis alsothesame.So

thelimiting operator,as for p = 1/2, hasnomatchingcondition,andthenorm is

If ~-~d~II2 = f IfI~rdrda.

The othertypeof line bundleof theannulushasnonvanishingsection =

(dz/z)3/2, which is equivalentto —i(dw/w)3/2. Just as in the caseof integer p
[equation(3.3) above],thematchingconditionis

u(8et’~)= (i)3I2v(5eI9_~0~)= ±iv(SetO~~).

We getessentiallythe samematchingconditions,and thesamelimit as 5 —~ 0, with

onesurvivingcondition.

6. SPINMODULI SPACEAND THE DETERMINANT LINE BUNDLE

Equivalenceclassesof Riemannsurfacesof genus g with spinstructure(choiceof

squareroot of the canonicalbundle) form a branched 229 covering M
9 of moduli

space. It has a naturalcompactification I~çgiving a branchedcoveringof M9. A

functionaldescriptionof M9 canbe foundin a letterfrom P. Deligneto Yu I. Manin,
dated25 September1987. Wedescribebriefly the relationof our ~ (~)to Deigne’s

compactification.
Let L be a line bundlegiving a spin structureon the Riemannsurface E1. Then

L 0 L ~ K or L Hom(L,K) = K ® L*. Replace L and K by their sheaves

of local sections£ and IC sothat £ ~‘ Hom(L,IC). Now, following Deligne,on the
singularsurface~ we define aspin structureasa coherenttorsionfreeanalyticsheaf

.F so that F Horn (F, IC) where IC is thesheafof germsof the line bundle K0
which is thecanonicalline bundleaway from thenode z = 0 = w andwhosenon-
vanishingsectionnearthenodeisdz/z = —dw/w for (z,w) ~‘(0,0). (Thedomain

of the limiting operator D0 for p = 1 consistsof sectionsof K0 in theappropriate
Sobolevclass).Delignepointsout, amongotherthings,that canbe identifiedwith

thesetof suchsheavesF.
Now when F is free, it givesaline bundle,asquareroot of K0. When F is not

free, it is givenby a line bundleawayfrom thenodeand atthe nodeit is thedirect sum

of local sectionsof a line bundleon U < lzi < � and a line bundleon U < wi < �.
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Our previousdescriptionof thedomain of thelimiting operator80 (3-) in section5 is

exactlyananalyticdescriptionof F as thelocal solutionss to t
9,~ (3-). Thus 0~(3-)

istheelementofthefamily {8(3-)}~at FE M.

Thecontinuityof 8(p) as t —* U for p an integer(section4) shows(afterallowing

for afinite numberof nodes)that {0(~)}m�~ is a continuousfamily of elliptic opera-

tors.Thecontinuityprovedin section5 showsfor p E Z + 3-, that {8( p)~ is also

acontinuousfamily of elliptic operators.

Since {8(p) ~ is a continuousfamily, it hasa determinantline bundle DET~
over M

9. Over M9, theindex theoremfor families is thesameastheGrothendieck-

Riemann-Rochtheorem. Oneobtainsdirectly the Hodgeline bundle )~6~_l)4i over

M~.

Now thecanonicalline bundleIC of thefibersin N9 extendsto acanonicalline bun-
dle IC over N9. Its sheafof local holomorphicsectionsis therelativedualizingsheafw.
Let ~r: N9 —~ M9 sothat 7r!(w) E K(M9). Let ~ = det lr!(w); then ~‘iM = )~. The

matchingconditionfor p = I in section 1 is the zero residueconditionwhich charac-
terizes w[H]. Henceker80 = H°(ir~

1(m),w)and ker(Ôo)* = H’(ir~(m),w)

sothatDET~=~)6P(P_I)+l. —

For p = 3-, DET ~ (3-) is a line bundle over J~.Presumblyit canbe identified

with det ~r(Y) where * : N
9 —* and F is the <<Deligne sheaf>>over N9 such

thatF=Hom(F,w). —

It shouldbe noted thatbecauseH°’
2(M

9) = U and H°’
2(M

9) = U, we can

concludedirectly that the line bundle DET~canbegiven aholornorphicstructure.

7. THE INDEX

Herewesketcha proofof theRiemann-Rochindex formula

md
8

9(p) = (
2p— l)(g— 1)

for ~
9(p) actingonK~ofaRiemannsurface~(g) of genusg. When g= l,~(g)

is a torus,and the index is trivially U. We will show that the index dropsby
2p — 1

whenthe genusdropsby 1, hencethegeneralformula. Whatis perhapsinterestingin

this proof is the directcomparisonof indicesby comparingboundaryconditionsat the
node.

On ~(g), choosea generatorof the fundamentalgroup suchthat ~(g) canbe
identified with a surfaceZ~constructedas in Section 1 from a surface ~ of genus
p — 1. By the continuityof the family D

1, md(8~(p)) = md(D0), where D0 is the
limiting operator<<living>> on ~, with a domainallowing certainsingularitiesat z = U

and w = 0. Wecomparethis to theusual
8

9_i(p) onthenonsingularsurfaceE, and
showthat the differencein the indices is 2p — 1.
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To makethecomparison,let

~‘=E\{izI < ~ � 1}~

Let ~ bethe HilbertablespaceofL2 sectionsof K~®~R”(~’).In H~~’°1define
,9[ p] withdomain

D~’°1={u in H~’°1: ,3,~E ~

(dw’\~

(7.1) U~

1~11= f ~\z~) ~ = g

f holomorphic in izl < 1,p holomorphicin wi < 1,

f(0) = (—l)~’g(O)}.

Theconditionson u along the two circles are a variantof theboundaryconditionsin
[APS]. Onecan checkthat, with respectto the bilinear pairing betweenH

1~’11and

H~~ the dual of 8[ p1 is — 8[ I — p]. Moreover,elementsin thenullspaceof
8[ p] havea naturaland uniqueextensionto elementsin thenulispacesof our limiting
operatorD

0, asdescribedin Section1 above;thusthesetwo nulispacesareisomorphic.

Thesameis truefor thenullspaceof thedualoperators,sothe indexof 8[ p1 equalsthe
indexof D0, which equalsin turn theindex of

We canconstructan analogousoperatorfrom H~~’°
1to H1~~whosekernel and

cokernelare isomorphicto that of c9
9_1(p) on ~. The domainof this operatorcan

be describedasin (7.1), but now f and p havezeroesof order p at the origin, to
cancelthepolesin(dz/z)P and (dw/w)P, andthereisnomatchingconditionf(0) =

(—1)Pg( U). This adds 2p — I conditionsto the domainof 0[ p1, thusreducingthe

indexby
2p — 1, asclaimed.

8. CONCLUDING REMARKS

If wehavemetricsona family X C M
9 of Riemannsurfaces,one canusedetermi-

nantsof ~ to put a Hermitianmetricon DET &(p) ~ following Quillen [Q].This
gives a uniqueconnectionand curvatureform expressingthe Chernclassof the line

bundleexplicitly as a 2-form. See[B] forexample.

However,as oneapproachesthe boundary M9 — M9, it is not clearwhat should
replacemetricsfor a family containinga point in M9 — M9. Bismutand Bost[BB] put
a metricon eachnon singularsurfaceso asto give a smoothmetricon the line bundle

K0 atthenodalsurface.Theythencomputethe 2-form representingtheChernclassof
thedeterminantline bundleof 8(p), over M9, which includesa Dirac delta function
currentwith supporton M9 — M9. Ourprocedureobtaining DET is differentbecause
ourLaplaciansaredifferent. Wehopeto presentaformulafor theChemclassof DET

andexplain its relationto EBB] elsewhere.
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